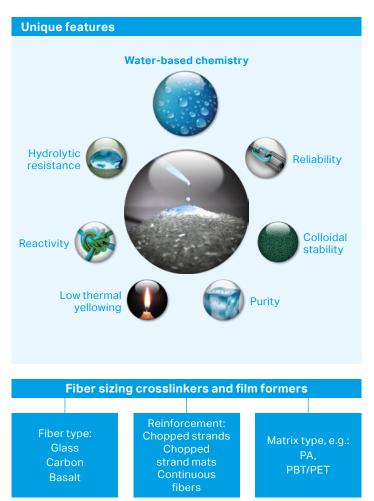


Fiber sizing – waterborne film formers and crosslinkers

Enhanced properties through unique polyurethane structure



solutions.covestro.com

Fiber sizing

Waterborne dispersions for fiber sizing: Enhanced properties through unique polyurethane structure.

To fully exploit their ability to reinforce plastics, fibers are coated with sizing immediately after they have been manufactured. The sizing provides a chemical bond between the plastic matrix and fiber surface, key to the strength of the composite.

Waterborne polyurethane dispersions from Covestro are used as film formers and crosslinkers in sizing formulations for glass, carbon (virgin and recycled) and basalt fibers utilized to reinforce thermoplastic and thermoset composite materials.

The dispersions can withstand high levels of mechanical stress, exhibit exceptional heat and hydrolysis resistance and are compatible with common sizing additives as well as with a broad range of matrixes.

The product line also has grades approved for **food contact** applications (EU 10/2011).

Fiber sizing portfolio – key benefits:

- High reliability due to high product consistency
- Solely covalent-bonded emulsifiers
- Low thermal yellowing
- Crosslinking during compounding
- Hydrolytic resistance adjustable via building blocks
- Food contact-approved film formers and crosslinkers (EU 10/2011).
- Easy fiber processing

Baybond[®] film formers and crosslinkers for glass fiber sizing.

PUD film formers for glass fiber sizing

Product	Туре	Hydrophilic character	Non-volatile content approx. (%)	Type pH- Value approx.	Comments
Baybond® PU 330	Polyester	lonic/nonionic	30	7.3	Recommended for thermoset application.
Baybond® PU 401-A	Polyester	lonic/nonionic	50	7.5	Universal product with balanced properties for various applications.
Baybond® PU 403	Polyester	lonic/nonionic	39	7.0	PUD film former with crosslinker function, deblocking temperature 150°C.
Baybond [®] PU 404 XP	Polyester	Nonionic	50	7.0	Universal product with balanced properties for various applications. Food contact acc. to EU 10/2011.
Baybond® PU 405	Polyether	Ionic/nonionic	34	7.0	PUD film former with additional crosslinking function, deblocking temperature 170°C.

Fiber sizing

Product	Туре	Hydrophilic character	Non-volatile content approx. (%)	Type pH- Value approx.	Comments
Baybond® PU 406	Polyether	Nonionic	34	6.5	Excellent fiber integrity and good thermo stability and hydrolysis resistance.
Baybond® PU 407	Polyester	lonic/nonionic	40	7.0	High film tensile strength.
Baybond® PU 409	Polyester	lonic/nonionic	50	7.5	Extremely low thermal yellowing.
Baybond® PU 415	Polyester	lonic/nonionic	45	7.0	Balanced properties for low to mid application.
Baybond® PU 571	Polyether	Nonionic	34	6.5	Excellent fiber integrity and good hydrolysis resistance. Food contact acc. to EU 10/2011.
Baybond® PU 1810/1	Polyester	Nonionic	50	6.0	Outstanding thermostability. Food contact acc. to EU 10/2011.
Baybond® PU 2277	Polyester	Ionic/nonionic	40	7.5	High film tackiness and good fiber integrity.
Baybond® PU 2569	Polyester	Ionic/nonionic	41	8.5	High film tackiness and good fiber integrity.
Baybond® PU 2728	Polycarbonate- polyether	Ionic/nonionic	59	8.0	Excellent hydrolysis resistance.
Baybond® PU 7269	Polyether	Ionic/nonionic	30	8.5	High film tackiness and good fiber integrity.

Thermally activated PUD crosslinkers for glass fiber sizing

Product	Туре	Blocking agent	Non-volatile content approx. (%)	Viscosity at 23°C approx. (mPa · s)	Calculated blocked NCO content on supply form/(resin) approx. (%)	Approx. Equivalent weight	Comments
Baybond® XL 825	HDI	E-CAP	30 in water	< 200	3.0 (10.0)	1,400	Low thermal yellowing, improved impact strength, adhesion and flexibility. Deblocking temperature approx. 170 °C.
Baybond® XL 1187	HDI	МЕКО	30 in water	< 200	2.9 (9.8)	1,450	High particle size, flexible and nonionic character. Deblocking temperature approx. 150 °C.
Baybond® XL 6366	HDI	MEKO	45 in water	< 200	4.3 (12.5)	975	High solid content, high flexibility. Deblocking temperature approx. 150 °C.

Thermally activated PUD crosslinkers for fiber sizing compliant to 2011/10/EU for food contact

Product	Туре	Blocking agent	Non-volatile content approx. (%)	Viscosity at 23°C approx. (mPa · s)	Calculated blocked NCO content on supply form/(resin) approx. (%)	Approx. Equivalent weight	Comments
Baybond® XL 3674	HDI	E-CAP	30 in water	< 200	2.9 (10.7)	1,310	Low thermal yellowing, improved impact strength, adhesion and flexibility. Deblocking temperature 170 °C
Baybond® XL 7270	HDI	E-CAP	30 in water	< 100	4.2 (13.1)	1,000	Improved impact strength, adhesion and flexibility. Deblocking temperature 170 °C

Film formers and crosslinkers for carbon and basalt fiber sizing.

PUD film formers for carbon and basalt fiber sizing

Product	Туре	Best suited matrix	Viscosity at 23°C approx. (mPa · s)	Comments
Baybond® PU 401-A	Polyurethane based on polyester	Polyamide	< 170	High molecular weight, very good fiber integrity.
Baybond® PU 1810/1	Polyurethane based on polyester	High-temperature resins	< 100	High molecular weight, very high thermostability, compliant to 2011/10/EU for food contact.
Bayhydrol® U 2757	Polyurethane based on polycarbonate/ polyester	Ероху	< 1500	Very low molecular weight, OH functional, COOH functional, good solubility.
Dispercoll® U 53	Polyurethane based on polyester	(Strengthen adhesion between fibers)	< 600	High molecular weight, semi-crystalline film, high adhesion between fibers, melts at 50-60 °C
Impranil® DLV/1	Polyurethane based on polycarbonate/ polyether	Ероху	< 50	Very high molecular weight, COOH functional.

Thermally activated PUD crosslinkers for carbon and basalt fiber sizing

Product	Туре	Best suited matrix	Viscosity at 23°C approx. (mPa · s)	Comments
Baybond® XL 6366	Thermolatent urethane crosslinker	Temperature dependent	< 200	Very low molecular weight, thermolatent urethane groups with normal reactivity.
Baybond® XL 7270	Thermolatent urethane crosslinker	Temperature dependent	< 100	Very low molecular weight, thermolatent urethane groups with low reactivity, low thermal yellowing, food contact acc. to EU 10/2011.
Bayhydrol® UV 2687/1	Polyurethane dispersion, acrylic functional	Vinyl/Unsaturated polyester	< 500	Very low molecular weight, acrylate functional (radical crosslinking), very low yellowing, high Tg.
Bayhydrol® UV 2689/2	Polyurethane dispersion, acrylic functional	Vinyl/Unsaturated polyester	< 2.500	High molecular weight, acrylate functional (radical crosslinking), high crosslinking density, low physical drying.
Bayhydur® BL XP 2706	Thermolatent urethane crosslinker	Temperature dependent	< 2.500	Very low molecular weight, COOH functional, thermolatent urethane groups with high reactivity, low thermal yellowing.
Bayhydur® BL 2867	Thermolatent urethane crosslinker	Temperature dependent	< 1.500	Very low molecular weight, thermolatent urethane groups with high reactivity, very low thermal yellowing.

Covestro Deutschland AG

Business Unit Coatings, Adhesives and Specialties D-51365 Leverkusen Germany

composites.covestro.com composites@covestro.com

The manner in which you use our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products to determine suitability for your processing and intended uses. Your analysis must at least include testing to determine suitability from a technical, health, safety, and environmental and regulatory standpoint. Such testing has not necessarily been done by Covestro, and Covestro has not obtained any approvals or licenses for a particular use or application of the product, unless explicitly stated otherwise. [EMEA only: If the intended use of the product is for the manufacture of a pharmaceutical/medicinal product, medical device1 or of pre-cursor products for medical devices or for other specifically regulated applications which leads or may lead to a regulatory obligation of Covestro, Covestro must explicitly agree to such application before the sale. 1.Please see the "Guidance on Use of Covestro Products in a Medical Application" document.] Any samples provided by Covestro are for testing purposes only and not for commercial use. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale which are available upon request.All information, including technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed by you that you assume and hereby expressly release and indemnify us and hold us harmless from all liability. in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance, and information. Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with any claim of any patent relative to any material or its use. No license is implied or in fact granted under the claims of any patent. Typical value. These values are typical values only. Unless explicitly agreed in written form, the do not constitute a binding material specification or warranted values. Edition: 2020 · Printed in Germany